Notes for Nand2Tetris: Boolean Functions and Gate Logic
This is a note for Nand2Tetris Unit 1.
Unit 1.2
We can transform any boolean function to its disjunctive normal formula (析取范式), which means we can represent any boolean function only with NOT
, AND
and OR
.
Can we go further and use only two operations? The answer is YES! Since we can represent OR
with NOT
and AND
:
(x OR y) = NOT(NOT(x) AND NOT(y))
Can we go even further? The answer is also YES! Introducing NAND
:
Def.
(x NAND y) = NOT(x AND y)
We can represent NOT
only with NAND
:
NOT(x) = (x NAND x)
And then we can represent AND
with NAND
and NOT
:
(x AND y) = NOT(x NAND y)
Unit 1.3
Categories of logic gates
Logic gates:
- Elementary (Nand, And, Or, Not, …)
- Composite (复合的) (Mux, Adder, …)
Gate diagrams
Gate interfaces and implements
Unit 1.4
HDL: Hardware Description Language
Common HDLs:
- VHDL
- Verilog
- …
Unit 1.6
bus (总线)
Buses can be composed from (and broken into) sub-buses.
...
IN lsb[8], msb[8], ...
...
Add16(a[0..7]=lsb, a[8..15]=msb, b=..., out=...);
Add16(..., out[0...3]=t1, out[4..15]=t2);
Attention that [x..x]
can only appear in the left of the equal sign. Something wrong like in=a[0..7]
raises sub bus of an internal node may not be used
error!
a[0]
: right-most bit (the least significant bit, LSB)
a[15]
: left-most bit (the most significant bit, MSB)
Attention! The index is FROM RIGHT TO LEFT!
true
: each bit gets one
false
: each bit gets zero
Unit 1.7
Multiplexor (Mux, 复用器)
if sel == 0:
out = a
else:
out = b
Demultiplexor (DMux, 解复用器)
if sel == 0:
a, b = in, 0
else:
a, b = 0, in
Project 1
Not.hdl
Note that NOT(x) = x NAND x
.
/**
* Not gate:
* out = not in
*/
CHIP Not {
IN in;
OUT out;
PARTS:
Nand(a=in, b=in, out=out);
}
Not16.hdl
Just repeat Not
for 16 times. I wrote a Python script to generate this:
for i in range(16):
print(f"Not(in=in[{i}], out=out[{i}]);")
/**
* 16-bit Not:
* for i=0..15: out[i] = not in[i]
*/
CHIP Not16 {
IN in[16];
OUT out[16];
PARTS:
Not(in=in[0], out=out[0]);
Not(in=in[1], out=out[1]);
Not(in=in[2], out=out[2]);
Not(in=in[3], out=out[3]);
Not(in=in[4], out=out[4]);
Not(in=in[5], out=out[5]);
Not(in=in[6], out=out[6]);
Not(in=in[7], out=out[7]);
Not(in=in[8], out=out[8]);
Not(in=in[9], out=out[9]);
Not(in=in[10], out=out[10]);
Not(in=in[11], out=out[11]);
Not(in=in[12], out=out[12]);
Not(in=in[13], out=out[13]);
Not(in=in[14], out=out[14]);
Not(in=in[15], out=out[15]);
}
And.hdl
Note that (x AND y) = NOT(x NAND y)
.
/**
* And gate:
* out = 1 if (a == 1 and b == 1)
* 0 otherwise
*/
CHIP And {
IN a, b;
OUT out;
PARTS:
Nand(a=a, b=b, out=aNandb);
Not(in=aNandb, out=out);
}
And16.hdl
Similarly, repeat And
for 16 times.
/**
* 16-bit bitwise And:
* for i = 0..15: out[i] = (a[i] and b[i])
*/
CHIP And16 {
IN a[16], b[16];
OUT out[16];
PARTS:
And(a=a[0], b=b[0], out=out[0]);
And(a=a[1], b=b[1], out=out[1]);
And(a=a[2], b=b[2], out=out[2]);
And(a=a[3], b=b[3], out=out[3]);
And(a=a[4], b=b[4], out=out[4]);
And(a=a[5], b=b[5], out=out[5]);
And(a=a[6], b=b[6], out=out[6]);
And(a=a[7], b=b[7], out=out[7]);
And(a=a[8], b=b[8], out=out[8]);
And(a=a[9], b=b[9], out=out[9]);
And(a=a[10], b=b[10], out=out[10]);
And(a=a[11], b=b[11], out=out[11]);
And(a=a[12], b=b[12], out=out[12]);
And(a=a[13], b=b[13], out=out[13]);
And(a=a[14], b=b[14], out=out[14]);
And(a=a[15], b=b[15], out=out[15]);
}
Or.hdl
Note that (x Or y) = NOT(NOT(x) AND NOT(y))
.
/**
* Or gate:
* out = 1 if (a == 1 or b == 1)
* 0 otherwise
*/
CHIP Or {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=Nota);
Not(in=b, out=Notb);
And(a=Nota, b=Notb, out=NotaAndNotb);
Not(in=NotaAndNotb, out=out);
}
Or16.hdl
/**
* 16-bit bitwise Or:
* for i = 0..15 out[i] = (a[i] or b[i])
*/
CHIP Or16 {
IN a[16], b[16];
OUT out[16];
PARTS:
Or(a=a[0], b=b[0], out=out[0]);
Or(a=a[1], b=b[1], out=out[1]);
Or(a=a[2], b=b[2], out=out[2]);
Or(a=a[3], b=b[3], out=out[3]);
Or(a=a[4], b=b[4], out=out[4]);
Or(a=a[5], b=b[5], out=out[5]);
Or(a=a[6], b=b[6], out=out[6]);
Or(a=a[7], b=b[7], out=out[7]);
Or(a=a[8], b=b[8], out=out[8]);
Or(a=a[9], b=b[9], out=out[9]);
Or(a=a[10], b=b[10], out=out[10]);
Or(a=a[11], b=b[11], out=out[11]);
Or(a=a[12], b=b[12], out=out[12]);
Or(a=a[13], b=b[13], out=out[13]);
Or(a=a[14], b=b[14], out=out[14]);
Or(a=a[15], b=b[15], out=out[15]);
}
Or8Way.hdl
Connect all the eight inputs together end to end with Or
.
/**
* 8-way Or:
* out = (in[0] or in[1] or ... or in[7])
*/
CHIP Or8Way {
IN in[8];
OUT out;
PARTS:
Or(a=in[0], b=in[1], out=or1);
Or(a=or1, b=in[2], out=or2);
Or(a=or2, b=in[3], out=or3);
Or(a=or3, b=in[4], out=or4);
Or(a=or4, b=in[5], out=or5);
Or(a=or5, b=in[6], out=or6);
Or(a=or6, b=in[7], out=out);
}
Xor.hdl
List the truth table of XOR
, and then you will find that (x XOR y) = (NOT(x) AND y) OR (x AND NOT(y))
.
/**
* Exclusive-or gate:
* out = not (a == b)
*/
CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=Nota);
Not(in=b, out=Notb);
And(a=Nota, b=b, out=NotaAndb);
And(a=a, b=Notb, out=aAndNotb);
Or(a=NotaAndb, b=aAndNotb, out=out);
}
Mux.hdl
List the truth table, and find the disjunctive normal formula:
MUX(a, b, sel) = (NOT(a) AND b AND sel)
OR (a AND NOT(b) AND NOT(sel))
OR (a AND b AND NOT(sel))
OR (a AND b AND sel)
/**
* Multiplexor:
* out = a if sel == 0
* b otherwise
*/
CHIP Mux {
IN a, b, sel;
OUT out;
PARTS:
Not(in=a, out=Nota);
Not(in=b, out=Notb);
Not(in=sel, out=Notsel);
And(a=Nota, b=b, out=p1p);
And(a=p1p, b=sel, out=p1);
And(a=a, b=Notb, out=p2p);
And(a=p2p, b=Notsel, out=p2);
And(a=a, b=b, out=p34p);
And(a=p34p, b=Notsel, out=p3);
And(a=p34p, b=sel, out=p4);
Or(a=p1, b=p2, out=o1);
Or(a=o1, b=p3, out=o2);
Or(a=o2, b=p4, out=out);
}
Mux16.hdl
/**
* 16-bit multiplexor:
* for i = 0..15 out[i] = a[i] if sel == 0
* b[i] if sel == 1
*/
CHIP Mux16 {
IN a[16], b[16], sel;
OUT out[16];
PARTS:
Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
Mux(a=a[1], b=b[1], sel=sel, out=out[1]);
Mux(a=a[2], b=b[2], sel=sel, out=out[2]);
Mux(a=a[3], b=b[3], sel=sel, out=out[3]);
Mux(a=a[4], b=b[4], sel=sel, out=out[4]);
Mux(a=a[5], b=b[5], sel=sel, out=out[5]);
Mux(a=a[6], b=b[6], sel=sel, out=out[6]);
Mux(a=a[7], b=b[7], sel=sel, out=out[7]);
Mux(a=a[8], b=b[8], sel=sel, out=out[8]);
Mux(a=a[9], b=b[9], sel=sel, out=out[9]);
Mux(a=a[10], b=b[10], sel=sel, out=out[10]);
Mux(a=a[11], b=b[11], sel=sel, out=out[11]);
Mux(a=a[12], b=b[12], sel=sel, out=out[12]);
Mux(a=a[13], b=b[13], sel=sel, out=out[13]);
Mux(a=a[14], b=b[14], sel=sel, out=out[14]);
Mux(a=a[15], b=b[15], sel=sel, out=out[15]);
}
Mux4Way16.hdl
The idea of the implementation is classify the four inputs into two groups, and use two layers of Mux16
;
/**
* 4-way 16-bit multiplexor:
* out = a if sel == 00
* b if sel == 01
* c if sel == 10
* d if sel == 11
*/
CHIP Mux4Way16 {
IN a[16], b[16], c[16], d[16], sel[2];
OUT out[16];
PARTS:
Mux16(a=a, b=b, sel=sel[0], out=ab);
Mux16(a=c, b=d, sel=sel[0], out=cd);
Mux16(a=ab, b=cd, sel=sel[1], out=out);
}
Mux8Way16.hdl
/**
* 8-way 16-bit multiplexor:
* out = a if sel == 000
* b if sel == 001
* etc.
* h if sel == 111
*/
CHIP Mux8Way16 {
IN a[16], b[16], c[16], d[16],
e[16], f[16], g[16], h[16],
sel[3];
OUT out[16];
PARTS:
Mux4Way16(a=a, b=b, c=c, d=d, sel=sel[0..1], out=abcd);
Mux4Way16(a=e, b=f, c=g, d=h, sel=sel[0..1], out=efgh);
Mux16(a=abcd, b=efgh, sel=sel[2], out=out);
}
DMux.hdl
/**
* Demultiplexor:
* {a, b} = {in, 0} if sel == 0
* {0, in} if sel == 1
*/
CHIP DMux {
IN in, sel;
OUT a, b;
PARTS:
Not(in=sel, out=Notsel);
And(a=in, b=Notsel, out=a);
And(a=in, b=sel, out=b);
}
DMux4Way.hdl
/**
* 4-way demultiplexor:
* {a, b, c, d} = {in, 0, 0, 0} if sel == 00
* {0, in, 0, 0} if sel == 01
* {0, 0, in, 0} if sel == 10
* {0, 0, 0, in} if sel == 11
*/
CHIP DMux4Way {
IN in, sel[2];
OUT a, b, c, d;
PARTS:
DMux(in=in, sel=sel[1], a=ab, b=cd);
DMux(in=ab, sel=sel[0], a=a, b=b);
DMux(in=cd, sel=sel[0], a=c, b=d);
}
DMux8Way.hdl
/**
* 8-way demultiplexor:
* {a, b, c, d, e, f, g, h} = {in, 0, 0, 0, 0, 0, 0, 0} if sel == 000
* {0, in, 0, 0, 0, 0, 0, 0} if sel == 001
* etc.
* {0, 0, 0, 0, 0, 0, 0, in} if sel == 111
*/
CHIP DMux8Way {
IN in, sel[3];
OUT a, b, c, d, e, f, g, h;
PARTS:
DMux(in=in, sel=sel[2], a=abcd, b=efgh);
DMux4Way(in=abcd, sel=sel[0..1], a=a, b=b, c=c, d=d);
DMux4Way(in=efgh, sel=sel[0..1], a=e, b=f, c=g, d=h);
}